fitness articles

diet & optimum nutrition

Health Benefits of Ketogenic Diet


Health Benefits of Ketogenic DietThe ketogenic diet is a high-fat, adequate-protein, low-carbohydrate diet that in medicine is used primarily to treat difficult-to-control (refractory) epilepsy in children. The diet forces the body to burn fats rather than carbohydrates. Normally, the carbohydrates contained in food are converted into glucose, which is then transported around the body and is particularly important in fuelling brain-function. However, if there is very little carbohydrate in the diet, the liver converts fat into fatty acids and ketone bodies. The ketone bodies pass into the brain and replace glucose as an energy source. An elevated level of ketone bodies in the blood, a state known as ketosis, leads to a reduction in the frequency of epileptic seizures.

The original therapeutic diet for paediatric epilepsy provides just enough protein for body growth and repair, and sufficient calories to maintain the correct weight for age and height. This classic ketogenic diet contains a 4:1 ratio by weight of fat to combined protein and carbohydrate. This is achieved by excluding high-carbohydrate foods such as starchy fruits and vegetables, bread, pasta, grains and sugar, while increasing the consumption of foods high in fat such as nuts, cream and butter.

Most dietary fat is made of molecules called long-chain triglycerides (LCTs). However, medium-chain triglycerides (MCTs)�made from fatty acids with shorter carbon chains than LCTs�are more ketogenic. A variant of the classic diet known as the MCT ketogenic diet uses a form of coconut oil, which is rich in MCTs, to provide around half the calories.

As less overall fat is needed in this variant of the diet, a greater proportion of carbohydrate and protein can be consumed, allowing a greater variety of food choices. The classic therapeutic ketogenic diet was developed for treatment of paediatric epilepsy in the 1920s and was widely used into the next decade, but its popularity waned with the introduction of effective anticonvulsant drugs. In the mid-1990s, Hollywood producer Jim Abrahams, whose son's severe epilepsy was effectively controlled by the diet, created the Charlie Foundation to promote it. Publicity included an appearance on NBC's Dateline programme and ...First Do No Harm (1997), a made-for-television film starring Meryl Streep. The foundation sponsored a multicentre research study, the results of which�announced in 1996�marked the beginning of renewed scientific interest in the diet.
 

Almost half of children and young people with epilepsy who have tried some form of this diet saw the number of seizures drop by at least half, and the effect persists even after discontinuing the diet. The most common adverse effect is constipation, affecting about 30% of patients�this was due to fluid restriction, which was once a feature of the diet, but this led to increased risk of kidney stones, and is no longer considered beneficial. There is some evidence that adults with epilepsy may benefit from the diet, and that a less strict regimen, such as a modified Atkins diet, is similarly effective. Clinical trials and studies in animal models suggest that ketogenic diets provide neuroprotective and disease-modifying benefits for a number of adult neurodegenerative disorders. As of 2012, there is limited clinical trial data in these areas, and, outside of paediatric epilepsy, use of the ketogenic diet remains at the research stage.

Epilepsy is one of the most common neurological disorders after stroke, and affects at least 50 million people worldwide. It is diagnosed in a person having recurrent unprovoked seizures. These occur when cortical neurons fire excessively, hypersynchronously, or both, leading to temporary disruption of normal brain function. This might affect, for example, the muscles, the senses, consciousness, or a combination. A seizure can be focal (confined to one part of the brain) or generalised (spread widely throughout the brain and leading to a loss of consciousness). Epilepsy may occur for a variety of reasons; some forms have been classified into epileptic syndromes, most of which begin in childhood. Epilepsy is considered refractory (not yielding to treatment) when two or three anticonvulsant drugs have failed to control it. About 60% of patients will achieve control of their epilepsy with the first drug they use, whereas about 30% do not achieve control with drugs. When drugs fail, other options include epilepsy surgery, vagus nerve stimulation and the ketogenic diet.

The ketogenic diet is a mainstream therapy that does not use pharmaceutical drugs, which was developed to reproduce the success and remove the limitations of the non-mainstream use of fasting to treat epilepsy. Although popular in the 1920s and 30s, it was largely abandoned in favour of new anticonvulsant drugs. Most individuals with epilepsy can successfully control their seizures with medication. However, 20�30% fail to achieve such control despite trying a number of different drugs. For this group, and for children in particular, the diet has once again found a role in epilepsy management.

Physicians of ancient Greece treated diseases, including epilepsy, by altering their patients' diet. An early treatise in the Hippocratic Corpus, On the Sacred Disease, covers the disease; it dates from c. 400 BC. Its author argued against the prevailing view that epilepsy was supernatural in origin and cure, and proposed that dietary therapy had a rational and physical basis. In the same collection, the author of Epidemics describes the case of a man whose epilepsy is cured as quickly as it had appeared, through complete abstinence of food and drink. The royal physician Erasistratus declared, "One inclining to epilepsy should be made to fast without mercy and be put on short rations." Galen believed an "attenuating diet" might afford a cure in mild cases and be helpful in others.

Health Benefits of Ketogenic DietThe first modern study of fasting as a treatment for epilepsy was in France in 1911. Twenty epilepsy patients of all ages were "detoxified" by consuming a low-calorie vegetarian diet, combined with periods of fasting and purging. Two benefited enormously, but most failed to maintain compliance with the imposed restrictions. The diet improved the patients' mental capabilities, in contrast to their medication, potassium bromide, which dulled the mind.

Around this time, Bernarr Macfadden, an American exponent of physical culture, popularised the use of fasting to restore health. His disciple, the osteopathic physician Hugh Conklin, of Battle Creek, Michigan, began to treat his epilepsy patients by recommending fasting. Conklin conjectured that epileptic seizures were caused when a toxin, secreted from the Peyer's patches in the intestines, was discharged into the bloodstream. He recommended a fast lasting 18 to 25 days to allow this toxin to dissipate. Conklin probably treated hundreds of epilepsy patients with his "water diet" and boasted of a 90% cure rate in children, falling to 50% in adults. Later analysis of Conklin's case records showed 20% of his patients achieved freedom from seizures and 50% had some improvement.

Conklin's fasting therapy was adopted by neurologists in mainstream practice. In 1916, a Dr McMurray wrote to the New York Medical Journal claiming to have successfully treated epilepsy patients with a fast, followed by a starch- and sugar-free diet, since 1912. In 1921, prominent endocrinologist H. Rawle Geyelin reported his experiences to the American Medical Association convention. He had seen Conklin's success first-hand and had attempted to reproduce the results in 36 of his own patients. He achieved similar results despite only having studied the patients for a short time. Further studies in the 1920s indicated that seizures generally returned after the fast. Charles Howland, the parent of one of Conklin's successful patients and a wealthy New York corporate lawyer, gave his brother John a gift of $5,000 to study "the ketosis of starvation". As professor of paediatrics at Johns Hopkins Hospital, John Howland used the money to fund research undertaken by neurologist Stanley Cobb and his assistant William G. Lennox.

Diet


In 1921, Rollin Woodyatt reviewed the research on diet and diabetes. He reported that three water-soluble compounds, β-hydroxybutyrate, acetoacetate and acetone (known collectively as ketone bodies), were produced by the liver in otherwise healthy people when they were starved or if they consumed a very low-carbohydrate, high-fat diet. Russel Wilder, at the Mayo Clinic, built on this research and coined the term ketogenic diet to describe a diet that produced a high level of ketone bodies in the blood (ketonemia) through an excess of fat and lack of carbohydrate. Wilder hoped to obtain the benefits of fasting in a dietary therapy that could be maintained indefinitely. His trial on a few epilepsy patients in 1921 was the first use of the ketogenic diet as a treatment for epilepsy.
 

Wilder's colleague, paediatrician Mynie Peterman, later formulated the classic diet, with a ratio of one gram of protein per kilogram of body weight in children, 10�15 g of carbohydrate per day, and the remainder of calories from fat. Peterman's work in the 1920s established the techniques for induction and maintenance of the diet. Peterman documented positive effects (improved alertness, behaviour and sleep) and adverse effects (nausea and vomiting due to excess ketosis). The diet proved to be very successful in children: Peterman reported in 1925 that 95% of 37 young patients had improved seizure control on the diet and 60% became seizure-free. By 1930, the diet had also been studied in 100 teenagers and adults. Clifford Barborka, also from the Mayo Clinic, reported that 56% of those older patients improved on the diet and 12% became seizure-free. Although the adult results are similar to modern studies of children, they did not compare as well to contemporary studies. Barborka concluded that adults were least likely to benefit from the diet, and the use of the ketogenic diet in adults was not studied again until 1999.

Anticonvulsants and decline

During the 1920s and 1930s, when the only anticonvulsant drugs were the sedative bromides (discovered 1857) and phenobarbital (1912), the ketogenic diet was widely used and studied. This changed in 1938 when H. Houston Merritt and Tracy Putnam discovered phenytoin (Dilantin), and the focus of research shifted to discovering new drugs. With the introduction of sodium valproate in the 1970s, drugs were available to neurologists that were effective across a broad range of epileptic syndromes and seizure types. The use of the ketogenic diet, by this time restricted to difficult cases such as Lennox�Gastaut syndrome, declined further

The brain is composed of a network of neurons that transmit signals by propagating nerve impulses. The propagation of this impulse from one neuron's synapse to another is typically controlled by neurotransmitters, though there are also electrical pathways between some neurons. Neurotransmitters can inhibit impulse firing (primarily done by γ-aminobutyric acid, or GABA) or they can excite the neuron into firing (primarily done by glutamate). A neuron that releases inhibitory neurotransmitters from its terminals is called an inhibitory neuron, while one that releases excitatory neurotransmitters is an excitatory neuron. When the normal balance between inhibition and excitation is significantly disrupted in all or part of the brain, a seizure can occur. The GABA system is an important target for anticonvulsant drugs, since seizures may be discouraged by increasing GABA synthesis, decreasing its breakdown, or enhancing its effect on neurons.

The nerve impulse is characterised by a great influx of sodium ions through channels in the neuron's cell membrane followed by an efflux of potassium ions through other channels. The neuron is unable to fire again for a short time (known as the refractory period), which is mediated by another potassium channel. The flow through these ion channels is governed by a "gate" which is opened by either a voltage change or a chemical messenger known as a ligand (such as a neurotransmitter). These channels are another target for anticonvulsant drugs.

There are many ways in which epilepsy occurs. Examples of pathological physiology include: unusual excitatory connections within the neuronal network of the brain; abnormal neuron structure leading to altered current flow; decreased inhibitory neurotransmitter synthesis; ineffective receptors for inhibitory neurotransmitters; insufficient breakdown of excitatory neurotransmitters leading to excess; immature synapse development; and impaired function of ionic channels.

Seizure control


Health Benefits of Ketogenic DietAlthough many hypotheses have been put forward to explain how the ketogenic diet works, it remains a mystery. Disproven hypotheses include systemic acidosis (high levels of acid in the blood), electrolyte changes and hypoglycaemia (low blood glucose). Although many biochemical changes are known to occur in the brain of a patient on the ketogenic diet, it is not known which of these has an anticonvulsant effect. The lack of understanding in this area is similar to the situation with many anticonvulsant drugs.

On the ketogenic diet, carbohydrates are restricted and so cannot provide for all the metabolic needs of the body. Instead, fatty acids are used as the major source of fuel. These are used through fatty-acid oxidation in the cell's mitochondria (the energy-producing parts of the cell). Humans can convert some amino acids into glucose by a process called gluconeogenesis, but cannot do this for fatty acids. Since amino acids are needed to make proteins, which are essential for growth and repair of body tissues, these cannot be used only to produce glucose. This could pose a problem for the brain, since it is normally fuelled solely by glucose, and most fatty acids do not cross the blood�brain barrier. Fortunately, the liver can use long-chain fatty acids to synthesise the three ketone bodies β-hydroxybutyrate, acetoacetate and acetone. These ketone bodies enter the brain and substitute for glucose.[56]Medium-chain fatty acids octonoic and heptanoic acids can cross the barrier and be used by the brain.

The ketone bodies are possibly anticonvulsant in themselves; in animal models, acetoacetate and acetone protect against seizures. The ketogenic diet results in adaptive changes to brain energy metabolism that increase the energy reserves; ketone bodies are a more efficient fuel than glucose, and the number of mitochondria is increased. This may help the neurons to remain stable in the face of increased energy demand during a seizure, and may confer a neuroprotective effect.

The ketogenic diet has been studied in at least 14 rodent animal models of seizures. It is protective in many of these models and has a different protection profile than any known anticonvulsant. Conversely, fenofibrate, not used clinically as an antiepileptic, exhibits experimental anticonvulsant properties in adult rats comparable to the ketogenic diet. This, together with studies showing its efficacy in patients who have failed to achieve seizure control on half a dozen drugs, suggests a unique mechanism of action.

Anticonvulsants suppress epileptic seizures, but they neither cure nor prevent the development of seizure susceptibility. The development of epilepsy (epileptogenesis) is a process that is poorly understood. A few anticonvulsants (valproate, levetiracetam and benzodiazepines) have shown antiepileptogenic properties in animal models of epileptogenesis. However, no anticonvulsant has ever achieved this in a clinical trial in humans. The ketogenic diet has been found to have antiepileptogenic properties in rats.

Recently, a saturated medium-chain fatty acid called decanoic acid (C10) has shown promise in both the control of seizures and of neurodegeneration. Decanoic acid is a major constituent of the MCT ketogenic diet, and the authors suggest its action may be through inducing mitochondrial biogenesis and helping provide more ATP to maintain the resting membrane potential of the neuron.

The ketogenic diet may be a successful treatment for several rare metabolic diseases. Case reports of two children indicate that it may be a possible treatment for astrocytomas, a type of brain tumour. Autism, depression, migraine headaches, polycystic ovary syndrome and diabetes mellitus type 2 have also been shown to improve in small case studies. There is evidence from uncontrolled clinical trials and studies in animal models that the ketogenic diet can provide symptomatic and disease-modifying activity in a broad range of neurodegenerative disorders including amyotrophic lateral sclerosis, Alzheimer's disease and Parkinson's disease, and may be protective in traumatic brain injury and stroke. Because tumour cells are inefficient in processing ketone bodies for energy, the ketogenic diet has also been suggested as a treatment for cancer, including glioma.

A 2013 review said that there is enough suggestion of potential benefit from ketogenic diets in cancer therapy that establishing clinical trials is probably warranted. At present the only evidence of benefit is anecdotal, but designing effective trials to measure the effect of adopting a ketogenic diet could prove challenging.

In March 2009, Axona was approved as a medical food by the US Food and Drug Administration for the "dietary management of the metabolic processes and nutritional requirements associated with mild to moderate Alzheimer's disease". Glucose metabolism by the brain is impaired in Alzheimer's disease, and it is proposed that ketone bodies may provide an alternative energy source. Caprylidene is a powdered form of a medium-chain triglyceride, specifically caprylic triglyceride.

 

Next

 
Videos





Dated 23 June 2015

 

Listen to the Podcast (what's this)